bit.bio-ioGlutamatergic-Neurons

cat no | io1001

ioGlutamatergic Neurons

Human iPSC-derived glutamatergic neurons

ioGlutamatergic Neurons have been precision reprogrammed from human induced pluripotent stem cells (iPSC) using opti-ox™ technology. Within days, cells convert consistently to mature, functional glutamatergic neurons characterised by  >80% expression of glutamate transporter genes VGLUT1 and VGLUT2. Bulk RNA-sequencing analysis at day 11 shows an equimolar ratio of 3R/4R tau, indicating rapid maturation of the iPSC-derived neurons.

Glutamatergic neurons are delivered cryopreserved and ready-to-culture making them a high-quality human model for fundamental research, disease modelling and drug discovery.

Request a quote

Once your quote request has been submitted, one of our sales team will be in contact.

Unsure where to start?

Get in touch and we'll guide the way!

Benchtop benefits

quick_0

Quick

Ready for experimentation as early as 2 days post revival, show equimolar 3R/4R tau at 11 days, and form functional neuronal networks at 17 days.

scalable_0

Scalable

Industrial scale quantities at a price point that allows the cells to be used from research to screening scale.

easy_0

Easy to use

Cells arrive programmed to rapidly mature upon revival. One medium is required in a two-step protocol.

Product information

Starting material

Human iPSC line

Karyotype

Normal (46, XY)

Seeding compatibility

6, 12, 24, 48, 96 & 384 well plates

Shipping info

Dry ice

Donor

Caucasian adult male (skin fibroblast)

Vial size

Small: >1 x 10 viable cells Large: >5 x 10 viable cells

Quality control

Sterility, protein expression (ICC) and gene expression (RT-qPCR)

Differentiation method

opti-ox cellular reprogramming

Recommended seeding density

30,000 cells/cm²

User storage

LN2 or -150°C

Format

Cryopreserved cells

Product use

ioCells are for research use only

Applications

Drug discovery
Neurotoxicology
High throughput screening
CRISPR Screening
3D bioprinting

Technical data

Ready within days

ioGlutamatergic Neurons generated by transcription factor-driven reprogramming of iPSCs using opti-ox technology

Time-lapse video capturing the rapid and homogeneous neuronal phenotype acquisition upon thawing of cryopreserved ioGlutamatergic Neurons. 7 day time course.

Highly characterised and defined

ioGlutamatergic Neurons express glutamatergic neuron-specific markers

bit.bio ioGlutamatergic Neurons - Day 11 - MAP2 square
MAP2
bit.bio ioGlutamatergic Neurons - Day 11 - VGLUT2square
VGLUT2
bit.bio ioGlutamatergic Neurons - Day 11 - DAPIsquare
DAPI
bit-bio ioGlutamatergic Neurons - Day 11 - MERGE VGLUT2(g) MAP2(r) DAPI(b)
MERGE

Immunofluorescent staining on post-revival day 11 demonstrates homogenous expression of the pan-neuronal protein, MAP2 and glutamatergic neuron-specific transporter, VGLUT2. 

ioGlutamatergic Neurons form structural neuronal networks by day 11

WT isogenic control brightfield day 1
Day 1
WT isogenic control brightfield day 4
Day 4
WT isogenic control brightfield Day 7_1
Day 7
WT isogenic control brightfield day 11
Day 11

ioGlutamatergic Neurons mature rapidly and form structural neuronal networks over 11 days. Day 1 to 11 post thawing; 100X magnification.

Bulk RNA-sequencing of ioGlutamatergic Neurons shows an equimolar ratio of 3R/4R tau demonstrating maturity by day 11

Equimolar ratio of 3R/4R tau isoforms in iPSC-derived glutamatergic neurons at 11 days
The bulk RNA-sequencing data shows tau isoform expression levels in the ioGlutamatergic Neurons at day 11 post-revival. The tau 3R/4R ratio is circa 1:1 at day 11, similar to the ratio found in the human adult brain, indicating rapid maturation of the iPSC-derived neurons.

Human tau, encoded by the MAPT gene, undergoes alternative splicing of exons 2, 3, and 10, which leads to the expression of six tau isoforms in the adult human brain. Tau isoforms differ in their tubulin-binding domains, varying between three-repeat (3R) or four-repeat (4R) tau. The inclusion of exon 10 leads to the expression of 4R tau, while its exclusion generates the 3R isoforms. In the human adult brain, 3R and 4R isoforms of tau are found in an equimolar ratio.

Rapid gain of functional activity

ioGlutamatergic Neurons display neuronal activity that matures over-time

ioGlut-MEA

Examples of MaxOne high-resolution multi electrode array (MEA) recordings of ioGlutamatergic Neurons in BrainPhys™ media. The activity maps show firing rate (A), spike amplitude (B) and % of active electrodes (C). Results demonstrate a time-dependent increase of spontaneous activity during neuronal maturation from 2 to 3 weeks post-revival.

Iovino, M. et al., 2019, Charles River Laboratories.

Cells demonstrate a time-dependent increase of spontaneous bursting activity over a three-week period

ioGlut-spontaneous-burst-A
ioGlut-spontaneous-burst-B
ioGlut-spontaneous-burst-C

Click on the tabs to explore the data.

(A) The graph shows the % of active bursting electrodes for each time point. (B) An example of a spontaneous spike, taken at day 8 post-revival (1 second sweep, 32 µV/-18 µV). (C) An example of a bursting phenotype, taken at day 20 post-revival (1 second sweep, 16 µV/-16 µV). Cells were cultured in the bit.bio recommended open-source medium and recorded on 64-electrode MEAs.

NDimension (Science and Engineering) Ltd.

ioGlutamatergic Neurons co-cultured with rat-derived astrocytes demonstrate time-dependent increase in synchronous activity

ioGlut-AWSDR-D8
ioGlut-AWSDR-D13
ioGlut-AWSDR-D20

Click on the tabs to explore the data.

Array Wide Spike Detection Rate histograms (AWSDR – a graphical measure of synchrony) for 10-minute recordings on day 8, 13 and 20 post-revival ioGlutamatergic Neurons in co-culture with primary rat-derived astrocytes. Results show prominent synchronicity on day 13, exemplified by the ‘spikier’ nature of the associated AWSDR, which increases at day 20. Cells were cultured in the bit.bio recommended open-source medium and recorded on 64-electrode MEAs.

NDimension (Science and Engineering) Ltd.

Robust and scalable cells for high-throughput screening

ioGlutamatergic Neurons show good suitability for high-throughput screening in 384-well format plates

ioGlut-HTS

Cytotoxicity CellTiter-Glo®️ (CTG) and TR-FRET (HTRF®️) assays for AKT serine/threonine kinase 1 (AKT) and Huntingtin (HTT) proteins were performed on ioGlutamatergic Neurons in 384-well plates treated with tool compound (cmp) at day 9 post-revival. Compound titration results in a concentration response curve for all three assays (mean±sd of 2 replicates). CTG assay on ioGlutamatergic Neurons shows an excellent average signal/ background ratio and high suitability for HTS. HTRF® assays on ioGlutamatergic Neurons show lower signals but with low variability, and could therefore also provide a suitable platform for HTS.

Iovino, M. et al., 2019, Charles River Laboratories.

 

Industry leading seeding density

Do more with every vial

ioGlut-WT-well_plate-2

The seeding density of our human iPSC-derived glutamatergic neurons has been optimised and validated making it possible to have a cost point of under £0.67 (~$0.79) per well (96 well plate, seeding density 30,000 cells/cm2, Large vial size).

This means scientists are able to do more with every vial and expand experimental design within budget without losing out on quality. Resulting in more experimental conditions, more repeats, and more confidence in the data.

One Small vial can plate a minimum of 0.7 x 24-well plate, 1 x 96-well plate, or 1.5 x 384-well plate.

One Large vial can plate a minimum of 3.6 x 24-well plate, 5.4 x 96-well plate, or 7.75 x 384-well plates.

Easy culturing

Cells arrive ready to plate

ioGlut-timeline

ioGlutamatergic Neurons are delivered in a cryopreserved format and are programmed to rapidly mature upon revival in the recommended media. The protocol for the generation of these cells is a three-phase process: 1. Induction (carried out at bit.bio) 2. Stabilisation for 4 days 3. Maintenance during which the neurons mature.

Product resources

ioGlutamatergic Neurons Wild Type and related disease models | User Manual User manual
ioGlutamatergic Neurons Wild Type and related disease models | User Manual

V7

bit.bio

2023

Download
Rethinking Developmental Biology With Cellular Reprogramming Webinar
Rethinking Developmental Biology With Cellular Reprogramming

Mark Kotter | CEO and founder | bit.bio


Marius Wernig | Professor Departments of Pathology and Chemical and Systems Biology |  Stanford University


2023

Watch now
Precision Cellular Reprogramming for Scalable and Consistent Human Neurodegenerative Disease Models Talk
Precision Cellular Reprogramming for Scalable and Consistent Human Neurodegenerative Disease Models

Madeleine Garrett | Field Application Specialist | bit.bio

2023

Watch now
Development and characterisation of a robust in vitro disease model to study tauopathies Poster
Development and characterisation of a robust in vitro disease model to study tauopathies

V1
Charles River & bit.bio

2022

Download
Validation of ALS-relevant phenotypes in precision reprogrammed iPSC-derived glutamatergic Neurons containing a TDP-43 M337V mutation. Poster
Validation of ALS-relevant phenotypes in precision reprogrammed iPSC-derived glutamatergic Neurons containing a TDP-43 M337V mutation.

V1
Charles River & bit.bio

2022

Download
Developing next-generation in vitro phenotypic assays for Huntington’s disease by combining a precision reprogrammed hiPSC-derived disease model with high-density microelectrode arrays Application note
Developing next-generation in vitro phenotypic assays for Huntington’s disease by combining a precision reprogrammed hiPSC-derived disease model with high-density microelectrode arrays

bit.bio | MaxWell Biosystems | Charles River Laboratories

2022

Download
Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression | Publication Publication
Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression | Publication

Pavinlek., et al

Frontiers in Psychiatry

2022

 

Using ioGlutamatergic Neurons

 

 

Read more
Glutamatergic Neurons and Brain Cyst Formation | Publication Publication
Glutamatergic Neurons and Brain Cyst Formation | Publication

Bando., et al

Frontiers in Cellular and Infection Microbiology

2022

 

Using ioGlutamatergic Neurons

 

 

Read more

Giving you easy access to endless and reliable human cells

Read this blog to find out how our precision cellular reprogramming technology, opti-ox is powering cell identity, giving you easy access to endless and reliable human cells!

Giving you easy access to the best cells

Related products

ioSkeletal Myocytes DMD Exon 52 Deletion™ ioDisease Model
ioSkeletal Myocytes DMD Exon 52 Deletion™ cat no. io1019
Order now
ioSkeletal Myocytes DMD Exon 44 Deletion™ ioDisease Model
ioSkeletal Myocytes DMD Exon 44 Deletion™ cat no. io1018
Order now
ioGlutamatergic Neurons PRKN R275W/R275W™ ioDisease Model
ioGlutamatergic Neurons PRKN R275W/R275W™ cat no. io1020
Order now
ioGlutamatergic Neurons PRKN R275W/WT™ ioDisease Model
ioGlutamatergic Neurons PRKN R275W/WT™ cat no. io1013
Order now
ioGlutamatergic Neurons GBA null/WT™ ioDisease Model
ioGlutamatergic Neurons GBA null/WT™ cat no. io1007
Order now
ioGlutamatergic Neurons TDP‑43 M337V/M337V™ ioDisease Model
ioGlutamatergic Neurons TDP‑43 M337V/M337V™ cat no. ioEA1005
Order now
ioGlutamatergic Neurons TDP‑43 M337V/WT™ ioDisease Model
ioGlutamatergic Neurons TDP‑43 M337V/WT™ cat no. ioEA1006
Order now
ioSensory Neurons™ ioWild Type
ioSensory Neurons™ cat no. ioEA1024
Order now
ioGlutamatergic Neurons MAPT N279K/WT™ ioDisease Model
ioGlutamatergic Neurons MAPT N279K/WT™ cat no. io1009
Order now
ioGlutamatergic Neurons MAPT P301S/WT™ ioDisease Model
ioGlutamatergic Neurons MAPT P301S/WT™ cat no. io1015
Order now
ioGlutamatergic Neurons MAPT P301S/P301S™ ioDisease Model
ioGlutamatergic Neurons MAPT P301S/P301S™ cat no. io1018
Order now
ioMicroglia™ ioWild Type
ioMicroglia™ cat no. ioA021
Order now
ioGABAergic Neurons™ ioWild Type
ioGABAergic Neurons™ cat no. ioEA1003S
Order now
ioSkeletal Myocytes™ ioWild Type
ioSkeletal Myocytes™ cat no. io1002
Order now
ioGlutamatergic Neurons HTT 50CAG/WT™ ioDisease Model
ioGlutamatergic Neurons HTT 50CAG/WT™ cat no. ioEA1004
Order now

Wild type and isogenic disease model cells: A true comparison

Be confident in your data by pairing ioDisease Model cells with the genetically matched ioWild Type control.

bitbio-vials-Wild_and_Disease-staggered-2500px_wide-B

Related pages

Discover ioCells Learn about our range of human iPSC-derived cells for research and drug discovery
Resources Explore our latest scientific insights, webinars, blogs and videos
Our platform Discover the cell identity coding platform behind our cells