ioGlutamatergic Neurons PRKN R275W red image

cat no | io1020

ioGlutamatergic Neurons
PRKN R275W/R275W

Human iPSC-derived Parkinson's disease model

ioGlutamatergic Neurons PRKN R275W/R275W are opti‑ox deterministically programmed glutamatergic neurons carrying a genetically engineered homozygous mutation in the PRKN gene encoding the Parkin protein. These cells offer a rapidly maturing, disease relevant and isogenic system for investigating the molecular and cellular significance of a homozygous R275W mutation in Parkinson’s disease.

Place your order

Confidently investigate your phenotype of interest across multiple clones with our disease model clone panel. Detailed characterisation data (below) and bulk RNA sequencing data (upon request) help you select specific clones if required.

per vial

Benchtop benefits

comparison_0

Make True Comparisons

Pair the ioDisease Model Cells with the genetically matched wild-type ioGlutamatergic Neurons to directly investigate the effect of homozygous expression of mutant Parkin protein on disease.

scalable_0

Scalable

With opti-ox technology, we can make billions of consistently programmed cells, surpassing the demands of industrial workflows.

quick_0

Quick

The disease model cells and isogenic control are experiment ready as early as 2 days post revival, and form structural neuronal networks at 11 days.

Technical data

Highly characterised and defined

ioGlutamatergic Neurons PRKN R275W/R275W express neuron-specific markers comparably to the isogenic control
ICC showing that ioGlutamatergic Neurons PRKN R275W/R275W express pan neuronal markers
Immunofluorescent staining on post-revival day 11 demonstrates similar homogenous expression of pan-neuronal proteins TUBB3 and MAP2 (upper panel) and glutamatergic neuron-specific transporter VGLUT2 (lower panel) in ioGlutamatergic Neurons PRKN R275W/R275W compared to the isogenic control. 100X magnification.
ioGlutamatergic Neurons PRKN R275W/R275W form structural neuronal networks by day 11
Incucyte imaging of ioGlutamatergic Neurons PRKN R275W/WT over 11 days, showing the cells form structural neuronal networks
ioGlutamatergic Neurons PRKN R275W/R275W mature rapidly and form structural neuronal networks over 11 days, when compared to the isogenic control. Day 1 to 11 post thawing; 100X magnification.
ioGlutamatergic Neurons PRKN R275W/R275W demonstrate gene expression of neuronal and glutamatergic-specific markers following deterministic programming
RT-qPCR of ioGlutamatergic Neurons PRKN R275W hom showing expression of pan neuronal and glutamatergic markers
Gene expression analysis demonstrates that ioGlutamatergic Neurons PRKN R275W/R275W and the isogenic control (WT) lack the expression of pluripotency markers (NANOG and OCT4) at day 11, whilst robustly expressing pan-neuronal (TUBB3 and SYP) and glutamatergic specific (VGLUT1 and VGLUT2) markers, as well as the glutamate receptor GRIA4. Gene expression levels were assessed by RT-qPCR (data expressed relative to the parental hiPSC control (iPSC Control), normalised to HMBS). Data represents day 11 post-revival samples.
Disease-related PRKN is expressed in ioGlutamatergic Neurons PRKN R275W/R275W following deterministic programming
ioGlutamatergic_neurons-PRKN-R275W-R275W-rt-qPCR-PRKN2
Gene expression analysis demonstrates that ioGlutamatergic Neurons PRKN R275W/R275W and the isogenic control (WT) express the PRKN gene encoding the Parkin protein. Gene expression levels were assessed by RT-qPCR (data expressed relative to the parental hiPSC control (iPSC Control), normalised to HMBS). Data represents day 11 post-revival samples.

Cells arrive ready to plate

ioGlutamatergic_Neurons_and_disease_models_timeline

ioGlutamatergic Neurons PRKN R275W/R275W are delivered in a cryopreserved format and are programmed to mature rapidly upon revival in the recommended media. The protocol for the generation of these cells is a two-phase process: Phase 1, Stabilisation for 4 days; Phase 2, Maintenance, during which the neurons mature. Phases 1 and 2 after revival of cells are carried out by the customer.

 

Industry leading seeding density

ioGlutamatergic_Neurons_seeding_density_small_96_384

The recommended minimum seeding density is 30,000 cells/cm2, compared to up to 250,000 cells/cm2 for other similar products on the market. One small vial can plate a minimum of 0.7 x 24-well plate, 1 x 96-well plate, or 1.5 x 384-well plates. This means every vial goes further, enabling more experimental conditions and more repeats, resulting in more confidence in the data.

Product information

Starting material

Human iPSC line

Karyotype

Normal (46, XY)

Seeding compatibility

6, 12, 24, 48, 96 & 384 well plates

Shipping info

Dry ice

Donor

Caucasian adult male (skin fibroblast)

Vial size

Small: >1 x 106 viable cells

Quality control

Sterility, protein expression (ICC), gene expression (RT-qPCR) and genotype validation (Sanger sequencing)

Differentiation method

opti-ox deterministic cell programming

Recommended seeding density

30,000 cells/cm2

User storage

LN2 or -150°C

Format

Cryopreserved cells

Genetic modification

Homozygous R275W missense mutation in the PRKN gene

Applications

Parkinson's disease research
Drug discovery and development
Disease modelling

Product use

ioCells are for research use only

Product resources

ioGlutamatergic Neurons Brochure
ioGlutamatergic Neurons

bit.bio

Download
ioGlutamatergic Neurons Wild Type and related disease models | User Manual User manual
ioGlutamatergic Neurons Wild Type and related disease models | User Manual

V11

bit.bio

2024

Download
Generation and characterisation of a panel of human iPSC-derived neurons and microglia carrying early and late onset relevant mutations for Alzheimer’s disease Poster
Generation and characterisation of a panel of human iPSC-derived neurons and microglia carrying early and late onset relevant mutations for Alzheimer’s disease
Smith, et al. 
bit.bio
2024
Download
Generating publishable neuroscience research in 12 weeks with ioGlutamatergic Neurons Case study
Generating publishable neuroscience research in 12 weeks with ioGlutamatergic Neurons

Professor Deepak Srivastava

Professor of Molecular Neuroscience and Group Leader, MRC Centre for Developmental Disorders

King’s College London 

Download
Running Large-Scale CRISPR Screens in Human Neurons Webinar
Running Large-Scale CRISPR Screens in Human Neurons

Emmanouil Metzakopian | Vice President, Research and Development | bit.bio

Javier Conde-Vancells | Director Product Management | bit.bio

Watch now
Addressing the Reproducibility Crisis | Driving Genome-Wide Consistency in Cellular Reprogramming Webinar
Addressing the Reproducibility Crisis | Driving Genome-Wide Consistency in Cellular Reprogramming

Dr Ania Wilczynska | Head of Computational Genomics | Non-Clinical | bit.bio

Watch now
Industrialising Cellular Reprogramming: Leveraging opti-ox Technology to Manufacture Human Cells with Unprecedented Consistency Talk
Industrialising Cellular Reprogramming: Leveraging opti-ox Technology to Manufacture Human Cells with Unprecedented Consistency

Innovation showcase talk at ISSCR

Marius Wernig MD, PhD | Stanford 

Mark Kotter, MD, PhD | bit.bio

Watch now

Cell culture hacks | human iPSC-derived glutamatergic neurons 

Read this blog on glutamatergic neuron cell culture for our top tips on careful handling, cell plating and media changes to achieve success from the outset.

bit.bio_3x2_ioGlutamatergic Neurons_MAP2_Hoescht_x20_hi.res (1)

Related products

ioGlutamatergic Neurons PRKN R275W/WT ioDisease Model Cells
ioGlutamatergic Neurons PRKN R275W/WT cat no. io1013
Order now
ioGlutamatergic Neurons ioWild Type Cells
ioGlutamatergic Neurons cat no. io1001
Order now
CRISPR-Ready ioGlutamatergic Neurons CRISPR-Ready ioCells
CRISPR-Ready ioGlutamatergic Neurons cat no. io1090S
Order now
ioGlutamatergic Neurons HTT 50CAG/WT ioDisease Model Cells
ioGlutamatergic Neurons HTT 50CAG/WT cat no. ioEA1004
Order now
ioGlutamatergic Neurons MAPT N279K/WT ioDisease Model Cells
ioGlutamatergic Neurons MAPT N279K/WT cat no. io1009
Order now
ioGlutamatergic Neurons MAPT P301S/WT ioDisease Model Cells
ioGlutamatergic Neurons MAPT P301S/WT cat no. io1015
Order now
ioGlutamatergic Neurons TDP‑43 M337V/WT ioDisease Model Cells
ioGlutamatergic Neurons TDP‑43 M337V/WT cat no. ioEA1006
Order now
ioGlutamatergic Neurons MAPT N279K/N279K ioDisease Model Cells
ioGlutamatergic Neurons MAPT N279K/N279K cat no. io1014
Order now
ioGlutamatergic Neurons MAPT P301S/P301S ioDisease Model Cells
ioGlutamatergic Neurons MAPT P301S/P301S cat no. io1008
Order now
ioGlutamatergic Neurons TDP‑43 M337V/M337V ioDisease Model Cells
ioGlutamatergic Neurons TDP‑43 M337V/M337V cat no. ioEA1005
Order now

Wild Type and Isogenic Disease Model cells: A true comparison.

Further your disease research by pairing our wild type cells with isogenic disease models.

bitbio-vials-Wild_and_Disease-staggered-2500px_wide

Related pages

Discover ioCells Learn about our range of human iPSC-derived cells for research and drug discovery
Resources Explore our latest scientific insights, webinars, blogs and videos
Our platform Discover the cell identity coding platform that powers our ioCells