Our cell identity coding platform

updated-static-optiox_0

Biology as software

At bit.bio we look at a cell as if it were a computer. The nucleus is the hard drive, storing genes in its DNA. Genes interact with one another, forming programs called gene regulatory networks. Together, these programs form LifeOS™, the Operating System of Life™.

At any given time only a subset of the programs in LifeOS are switched on and active, defining the function and identity of every cell. Gene regulatory networks are tightly controlled by transcription factors, the code of LifeOS.

Our cell identity coding platform gives us the enter button of LifeOS. It consists of two core parts: our discovery platform which identifies the precise code that defines cell fate and our precision cellular reprogramming technology - opti-ox™ - that deterministically reprograms stem cells into any cell type.

Watch CEO Mark Kotter discussing this approach. 

 

"A code script... must form the kernel of biological theory"

Sydney Brenner

updated-static-optiox_0
updated-animated-opti-one_0
updated-animated-opti-two_0
updated-animated-opti-three_0
opti-ox (optimised inducible overexpression) is our precision cellular reprogramming technology. It gives us the ability to faithfully execute genetic programs in human stem cells.
Transcription factors controlled by an inducible genetic switch are integrated into genomic safe harbour sites in the stem cell genome. Genomic safe harbour sites protect the integrity of the cell and the inserted program by avoiding gene silencing.
As every pluripotent stem cell in a population contains the same inducible program in their genomic safe harbour sites, we can precisely and consistently reprogram the population into a chosen cell identity at a commercial scale.
optiox-mobile-gif-100colours-6mb

See opti-ox in action

Reprogramming stem cells to functional skeletal muscle using opti-ox

opti-ox enables the reprogramming of entire cultures of stem cells into a precise cell identity with unprecedented consistency and speed (9-day time course, final contraction assay by addition of acetylcholine).

Learn more about opti-ox in this blog post.

compressed-static-discovery_0

Our discovery platform

Our discovery platform combines genetic screening, big data, machine learning and large scale experimentation to find the combination of transcription factor codes for every human cell type.

compressed-static-discovery_0
compressed-animated-tf-one_0
compressed-animated-tf-two_0
compressed-animated-tf-three_0
compressed-animated-tf-torth
compressed-animated-tf-one_0
From the 20,000 genes in a human cell, our discovery platform uncovers the unique code to create any cell type.
compressed-animated-tf-two_0
10,000 of these genes are actively involved in determining the unique function of each specific cell.
compressed-animated-tf-three_0
Approximately 2,000 transcription factors control these genes.
compressed-animated-tf-torth
Our discovery platform pinpoints between 1 and 6 transcription factors responsible for precisely defining the identity of each cell type, sub-cell type and cell state.

Cell Reprogramming

A departure from directed differentiation

Traditional stem cell differentiation

Traditional stem cell differentiation is based on the principles of developmental biology and early embryonic development during which pluripotent stem cells are transitioning via a number of intermediates into the final somatic cell type. Differentiation replicates these stepwise transitions using extracellular chemical stimuli such as cytokines. This ‘history’ is reflected in the epigenetic state of the cells and forms part of the identity of a cell.

Direct cellular reprogramming

Cellular reprogramming is a synthetic biology approach based on a fundamental paradigm shift with regards to how we view biology. Direct reprogramming disregards the ‘history’ of somatic cells. It is based on the paradigm that cell identity is defined by the gene regulatory networks that are active in a cell. These gene regulatory networks are controlled by transcription factors. Hence, the activation of appropriate reprogramming factors can induce a new cell type. These transcription factors are our ‘codes’.

The first cellular reprogramming protocol was proposed by Weintraub, Lassar, Davis in 1987. Thirty years later, Yamanaka, Wernig and Südhof have extended this concept and opened up a new field in biology that has been honored with a Nobel Prize.

As such, reprogramming enables the transition of biology from a traditional observatory science to something that is deterministic in the context of cell identity.

ioCells™ 

ioCells are precision reprogrammed human iPSC-derived cells powered by opti-ox technology that offers speed, reliability and consistency at scale for research and drug discovery.

Related pages

Therapeutics Find out how we are building a cell therapy pipeline with our cell identity coding platform
Discover ioCells Learn about our range of human iPSC-derived cells for research and drug discovery
News Read our latest updates and press coverage