Hero-GBA-Null-R159W_MAP2

cat no | io1007

ioGlutamatergic Neurons
GBA null/R159W

Human iPSC-derived Gaucher and Parkinson’s disease model

ioGlutamatergic Neurons GBA null/R159W are opti‑ox™ precision reprogrammed glutamatergic neurons carrying a genetically engineered compound heterozygous mutation in the GBA gene encoding the glucocerebrosidase (GCase) enzyme. These cells offer a rapidly maturing, human cell model to investigate modulation of GCase expression.

Place your order

Confidently investigate your phenotype of interest across multiple clones with our disease model clone panel. Detailed characterisation data (below) and bulk RNA sequencing data (upon request) help you select specific clones if required.

per vial

Benchtop benefits

comparison_0

Make True Comparisons

Pair the ioDisease Model Cells with the genetically matched wild-type ioGlutamatergic Neurons to investigate the impact of the GBA mutation on molecular mechanisms and cell function.

scalable

Scalable

With opti-ox technology, we can make billions of consistently reprogrammed cells, surpassing the demands of industrial workflows.

quick

Quick

The disease model cells and isogenic control are experiment ready as early as 2 days post revival, and form structural neuronal networks at 11 days.

Technical data

Highly characterised and defined

ioGlutamatergic Neurons GBA null/R159W express neuron-specific markers comparably to the isogenic control
io1007-ioGlutamatergic-Neurons-GBA-null-R159W-ICC-TUBB3-MAP2-VGLUT2
Immunofluorescent staining on post-revival day 11 demonstrates similar homogenous expression of pan-neuronal proteins TUBB3 and MAP2 (upper panel) and glutamatergic neuron-specific transporter VGLUT2 (lower panel) in ioGlutamatergic Neurons GBA null/R159W compared to the isogenic control. 100X magnification.
ioGlutamatergic Neurons GBA null/R159W form structural neuronal networks by day 11
io1007-ioGlutamatergic-Neurons-GBA-null-R159W-Morphology
ioGlutamatergic Neurons GBA null/R159W mature rapidly and form structural neuronal networks over 11 days, when compared to the isogenic control. Day 1 to 11 post thawing; 100X magnification.
ioGlutamatergic Neurons GBA null/R159W demonstrate gene expression of neuronal and glutamatergic-specific markers following reprogramming
io1007_GBA_null-R159W_RT-qPCR
Gene expression analysis demonstrates that ioGlutamatergic Neurons GBA null/R159W and the isogenic control (WT Control) lack the expression of pluripotency markers (NANOG and OCT4) at day 11, whilst robustly expressing pan-neuronal (TUBB3 and SYP) and glutamatergic specific (VGLUT1 and VGLUT2) markers, as well as the glutamate receptor GRIA4. Gene expression levels were assessed by RT-qPCR (data normalised to HMBS; cDNA samples of the parental human iPSC line (hiPSC) were included as reference). Data represents day 11 post-revival samples, n=2 replicates.
Disease-related GBA is expressed in ioGlutamatergic Neurons GBA null/R159W following reprogramming
GBA null-R159W GBA
Gene expression analysis demonstrates that ioGlutamatergic Neurons GBA null/R159W and the isogenic control (WT Control) express the GBA gene encoding the glucocerebrosidase protein. Gene expression levels were assessed by RT-qPCR (data normalised to HMBS, cDNA samples of the parental human iPSC line (hiPSC) were included as reference). Data represents day 11 post-revival samples, n=2 replicates.
GBA protein is present in ioGlutamatergic Neurons GBA null/R159W at a lower level than the wild type control
io1007_GBA null-R159W_western-blot

A Western blot experiment confirmed the presence of the GBA protein in ioGlutamatergic Neurons GBA null/R159W at a lower level than in the wild-type ioGlutamatergic Neurons. Day 11 cell lysates were subjected to Western blotting (20 µg protein in 40 µl per lane) using 4-20% mini protean TGX stain-free gels. Proteins were transferred onto PVDF membranes using the Trans-Blot Turbo Transfer Pack, blocked for 10 minutes, incubated with primary antibodies (GBA Invitrogen MA5-26589, 1:2000; GAPDH Abcam ab8245, 1:5000), washed three times, incubated with HRP-labelled secondary antibodies, washed three times and signal visualised by electrochemiluminescence.
1= ioGlutamatergic Neurons (wild type), 2= ioGlutamatergic Neurons GBA null/R159W.

Cells arrive ready to plate

ioGlutamatergic_Neurons_and_disease_models_timeline
ioGlutamatergic Neurons GBA null/R159W are delivered in a cryopreserved format and are programmed to mature rapidly upon revival in the recommended media. The protocol for the generation of these cells is a two-phase process: Phase 1, Stabilisation for 4 days; Phase 2, Maintenance, during which the neurons mature. Phases 1 and 2 after revival of cells are carried out by the customer.

Industry leading seeding density

ioGlutamatergic_Neurons_seeding_density_small_96_384
The recommended minimum seeding density is 30,000 cells/cm2, compared to up to 250,000 cells/cm2 for other similar commercially available products. One small vial can plate a minimum of 0.7 x 24-well plate, 1 x 96-well plate, or 1.5 x 384-well plates. This means every vial goes further, enabling more experimental conditions and more repeats, resulting in more confidence in the data.

Product information

Starting material

Human iPSC line

Karyotype

Normal (46, XY)

Seeding compatibility

6, 12, 24, 48, 96 & 384 well plates

Shipping info

Dry ice

Donor

Caucasian adult male (skin fibroblast)

Vial size

Small: >1 x 106 viable cells

Quality control

Sterility, protein expression (ICC), gene expression (RT-qPCR) and genotype validation (long amplicon sequencing)

Differentiation method

opti-ox cellular reprogramming

Recommended seeding density

30,000 cells/cm2

User storage

LN2 or -150°C

Format

Cryopreserved cells

Genetic modification

Compound heterozygous null/R159W mutation in the GBA gene*

Applications

Gaucher and Parkinson's disease research
Drug discovery and development
Disease modelling

Product use

ioCells are for research use only

*The null allele has a 1 base heterozygous deletion at position chr1:155,238,622 (GRCh38) located in coding exon 6, causing a frameshift resulting in a series of STOP codons (ENST00000574670.5). The second allele has a missense mutation, R159W (NM_000157.4(GBA1):c.475C>T (p.Arg159Trp))

Product resources

Generation and characterisation of a panel of human iPSC-derived neurons and microglia carrying early and late onset relevant mutations for Alzheimer’s disease Poster
Generation and characterisation of a panel of human iPSC-derived neurons and microglia carrying early and late onset relevant mutations for Alzheimer’s disease
Smith et al. 
bit.bio
2024
Downlaod
ioGlutamatergic Neurons Wild Type and related disease models | User Manual User manual
ioGlutamatergic Neurons Wild Type and related disease models | User Manual

V9

bit.bio

2024

Download
Generating publishable neuroscience research in 12 weeks with ioGlutamatergic Neurons™ Case study
Generating publishable neuroscience research in 12 weeks with ioGlutamatergic Neurons™

Professor Deepak Srivastava

Professor of Molecular Neuroscience and Group Leader, MRC Centre for Developmental Disorders

King’s College London 

Download
Running Large-Scale CRISPR Screens in Human Neurons Webinar
Running Large-Scale CRISPR Screens in Human Neurons

Emmanouil Metzakopian | Vice President, Research and Development | bit.bio

Javier Conde-Vancells | Director Product Management | bit.bio

Watch now
3D bioprinting of iPSC neuron-astrocyte coculture Publication
3D bioprinting of iPSC neuron-astrocyte coculture

Whitehouse, et al
JoVE Journal of Visualized Experiments 
2023

Using ioGlutamatergic Neurons

Read more
Addressing the Reproducibility Crisis | Driving Genome-Wide Consistency in Cellular Reprogramming Webinar
Addressing the Reproducibility Crisis | Driving Genome-Wide Consistency in Cellular Reprogramming

Dr Ania Wilczynska | Head of Computational Genomics | Non-Clinical | bit.bio

Watch now
Industrialising Cellular Reprogramming: Leveraging opti-ox™ Technology to Manufacture Human Cells with Unprecedented Consistency Talk
Industrialising Cellular Reprogramming: Leveraging opti-ox™ Technology to Manufacture Human Cells with Unprecedented Consistency

Innovation showcase talk at ISSCR

Marius Wernig MD, PhD | Stanford 

Mark Kotter, MD, PhD | bit.bio

Watch now
Modelling neurodegeneration: Human isogenic system to study FTD & ALS Poster
Modelling neurodegeneration: Human isogenic system to study FTD & ALS

Oosterveen, et al

bit.bio & Charles River Laboratories

2023

Download
Rethinking Developmental Biology With Cellular Reprogramming Webinar
Rethinking Developmental Biology With Cellular Reprogramming

Mark Kotter | CEO and founder | bit.bio

Marius Wernig | Professor Departments of Pathology and Chemical and Systems Biology |  Stanford University

Watch now
Precision Cellular Reprogramming for Scalable and Consistent Human Neurodegenerative Disease Models Talk
Precision Cellular Reprogramming for Scalable and Consistent Human Neurodegenerative Disease Models

Madeleine Garrett | Field Application Specialist | bit.bio

Watch now
Development and characterisation of a robust in vitro disease model to study tauopathies Poster
Development and characterisation of a robust in vitro disease model to study tauopathies

Ritsma et al

Charles River Laboratories & bit.bio

2022

Download
Validation of ALS-relevant phenotypes in precision reprogrammed iPSC-derived glutamatergic Neurons containing a TDP-43 M337V mutation. Poster
Validation of ALS-relevant phenotypes in precision reprogrammed iPSC-derived glutamatergic Neurons containing a TDP-43 M337V mutation.

Ritsma, et al

Charles River Laboratories & bit.bio

2022

Download
Rapid and consistent generation of functional microglia from reprogrammed hiPSCs to study neurodegeneration and neuroinflammation Poster
Rapid and consistent generation of functional microglia from reprogrammed hiPSCs to study neurodegeneration and neuroinflammation

Raman, et al

bit.bio

2022

Download
Developing next-generation in vitro phenotypic assays for Huntington’s disease by combining a precision reprogrammed hiPSC-derived disease model with high-density microelectrode arrays Application note
Developing next-generation in vitro phenotypic assays for Huntington’s disease by combining a precision reprogrammed hiPSC-derived disease model with high-density microelectrode arrays

bit.bio | MaxWell Biosystems | Charles River Laboratories

2022

Download
Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression | Publication Publication
Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression | Publication

Pavinlek, et al

Frontiers in Psychiatry

2022

 

Using ioGlutamatergic Neurons

 

 

Read more
Glutamatergic Neurons and Brain Cyst Formation | Publication Publication
Glutamatergic Neurons and Brain Cyst Formation | Publication

Bando, et al

Frontiers in Cellular and Infection Microbiology

2022

 

Using ioGlutamatergic Neurons

 

 

Read more
Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice | Publication Publication
Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice | Publication

Mah, et al

Experimental Neurology

2022

 

Using ioGlutamatergic Neurons

Read more
Modelling neurodevelopment | Investigating the impact of maternal immune activation on neurodevelopment using human iPSC-derived cells Webinar
Modelling neurodevelopment | Investigating the impact of maternal immune activation on neurodevelopment using human iPSC-derived cells

Dr Deepak Srivastava | King’s College London

Watch now
Partnering with Charles River to advance CNS drug discovery with ioGlutamatergic Neurons™ Video
Partnering with Charles River to advance CNS drug discovery with ioGlutamatergic Neurons™

Dr Marijn Vlaming | Head of Biology, et al.

Charles River & bit.bio

Watch now

Cell culture hacks | human iPSC-derived glutamatergic neurons

Read this blog on glutamatergic neuron cell culture for our top tips on careful handling, cell plating and media changes to achieve success from the outset.

bit.bio_3x2_ioGlutamatergic Neurons_MAP2_Hoescht_x20_hi.res (1)

Related products

ioGlutamatergic Neurons™ ioWild Type Cells
ioGlutamatergic Neurons™ cat no. io1001
Order now
ioGlutamatergic Neurons PRKN R275W/WT™ ioDisease Model Cells
ioGlutamatergic Neurons PRKN R275W/WT™ cat no. io1013
Order now
ioGlutamatergic Neurons PINK1 Q456X/WT™ ioDisease Model Cells
ioGlutamatergic Neurons PINK1 Q456X/WT™ cat no. io1078 | io1079 | io1080
Order now
ioGlutamatergic Neurons SNCA A53T/A53T™ ioDisease Model Cells
ioGlutamatergic Neurons SNCA A53T/A53T™ cat no. io1087 | io1088 | io1089
Order now
ioGlutamatergic Neurons PRKN R275W/R275W™ ioDisease Model Cells
ioGlutamatergic Neurons PRKN R275W/R275W™ cat no. io1020
Order now
ioGlutamatergic Neurons PINK1 Q456X/Q456X™ ioDisease Model Cells
ioGlutamatergic Neurons PINK1 Q456X/Q456X™ cat no. io1075 | io1076
Order now
CRISPR-Ready ioGlutamatergic Neurons™ ioCRISPR-Ready Cells
CRISPR-Ready ioGlutamatergic Neurons™ cat no. ioEA1090
Order now

Wild Type and Isogenic Disease Model cells: A true comparison.

Further your disease research by pairing our wild type cells with isogenic disease models.

bitbio-vials-Wild_and_Disease-staggered-2500px_wide

Related pages

Discover ioCells Learn about our range of human iPSC-derived cells for research and drug discovery
Resources Explore our latest scientific insights, webinars, blogs and videos
Our platform Discover the cell identity coding platform that powers our ioCells