cat no | io1002

ioSkeletal Myocytes

Human iPSC-derived
skeletal myocytes

ioSkeletal Myocytes, are human iPSC-derived skeletal myocytes deterministically programmed using opti-ox technology. Skeletal myocytes are delivered cryopreserved, upon revival the cells rapidly mature forming elongated striated, multinucleated muscle cells that contract within 10 days. Easy to culture, skeletal myocytes consistently exhibit high population purity expressing key myofilament proteins such as Desmin and Myosin Heavy Chain (MHC).

Place your order

Confidently investigate your phenotype of interest across multiple clones with our disease model clone panel. Detailed characterisation data (below) and bulk RNA sequencing data (upon request) help you select specific clones if required.

per vial

Benchtop benefits



Batch-to-batch reproducibility and homogeneity create a stable human model for the study of muscle, neuromuscular, and associated metabolic disorders.



Form striated, multinucleated, myocytes by day 10 post revival, that contract in response to acetylcholine.



Cells arrive programmed to rapidly mature upon revival. One medium is required in a two-step protocol.

Technical data

Ready within days

ioSkeletal Myocytes generated by transcription factor-driven deterministic programming of iPSCs using opti-ox technology

Time-lapse video capturing the rapid and homogeneous skeletal myocytes phenotype acquisition upon thawing of cryopreserved ioSkeletal Myocytes. 10 day time course.

Highly characterised and defined

ioSkeletal Myocytes express skeletal myocyte-specific markers ioSkeletal Myocytes Desmin DAPI
A. Desmin (red) /
DAPI (blue) ioSkeletal Myocytes Dystrophin DAPI
B. Dystrophin (green) /
DAPI (blue) ioSkeletal Myocytes Myogenin MHC
C. Myogenin (green) /
MHC (red) ioSkeletal Myocytes Troponin Phalloidin DAPI
D. Troponin (green) /
Phalloidin (red) /
DAPI (blue)

Immunocytochemistry staining at day 10 post revival demonstrates robust expression of components of the contractile apparatus such as Desmin (A), Dystrophin (B), and Myosin Heavy Chain (C), along with the muscle transcription factor Myogenin (C). Cells also demonstrate expression of Troponin with visible striated fibres and multinucleation (D).

Cells demonstrate classical myocyte morphology

day 3
day 5
day 10

ioSkeletal Myocytes form elongated multinucleated myocytes over 10 days. Day 1 to 10 post-thawing; 4X magnification; scale bar: 800µm

Cells demonstrate gene expression of key myogenic markers following deterministic programming

Cells demonstrate gene expression-1

Following reprogramming, ioSkeletal Myocytes downregulate expression of the pluripotency genes (A), whilst demonstrating robust expression of key myogenic markers (B). Gene expression levels assessed by RT-qPCR (data expressed relative to the parental hiPSC, normalised to HMBS). Data represents day 10 post-revival samples; n=7 biological replicates.

Robust and scalable cells for high-throughput screening

Cells are suitable for phenotypic based high-throughput screening


MHC positive cells-1

Click on the tabs to explore the data.

(A) Immunocytochemistry | Human fibroblasts were transduced with lentiviral vectors allowing inducible over-expression of MYOD1 to transdifferentiate them to myocytes in approximately 10 days. Transdifferentiated myotubes were stained for multiple myotube markers to assess the purity and degree of multi-nucleation. (B) Immunocytochemistry | ioSkeletal Myocytes generate myocytes within as little as 4 days post-revival with a high-degree of MHC+ cells (>80% purity), suitable for phenotypic based high throughput screens. (C) Myosin Heavy Chain Positive Cells | The total area of MHC positive cells generated is similar in a comparison between ioSkeletal Myocytes and transdifferentiated fibroblasts.

Shushant Jain et al, Charles River Laboratories

Rapid gain of functionality

Cells express the insulin regulated glucose transporter GLUT4, critical for metabolic studies

Gene expression-1
Western Blotting-1

Click on the tabs to explore the data.

(A) Gene expression | RT-qPCR, at day 10 post-revival, demonstrating expression of GLUT4 in the ioSkeletal Myocytes, compared to undifferentiated human iPSCs and ioGlutamatergic Neurons. (B) Immunocytochemistry | at day 7 post-revival, ioSkeletal Myocytes express GLUT4 in peri-nuclear regions, and show striations. (C) Western blotting | analysis of differentiated 3T3-L1 adipocytes and maturing ioSkeletal Myocytes demonstrates GLUT4 expression in a time-dependent manner.

Dougall Norris & Daniel Fazakerley, Wellcome-MRC Institute of Metabolic Science

In vitro human muscle cells suitable for contractility assays

By day 10 post-revival, cells demonstrate a strong contractile response upon addition of acetylcholine, providing a suitable human muscle model for contractility assays. Spontaneous contraction is also observed during continuous culture (data not shown). Day 10 post-revival skeletal myocytes; 50µM acetylcholine.

Seeding density

Available in two vial sizes, tailored to suit your experimental needs with minimal waste


Recommended seeding density for ioSkeletal Myocytes is 100,000 cells/cm2.

One Small vial can plate a minimum of 0.5 x 24-well plate, 0.75 x 96-well plate, or 1 x 384-well plate.

One Large vial can plate a minimum of 1 x 24-well plate, 1.5 x 96-well plates, or 2 x 384-well plates.

Cells arrive ready to plate


ioSkeletal Myocytes are delivered in a cryopreserved format and are programmed to mature rapidly upon revival in the recommended medium. The protocol for the generation of these cells is a two-phase process. Phase 1. Stabilisation for 3 days. Phase 2. Maintenance during which the skeletal myocytes mature.

Product information

Starting material

Human iPSC line


Normal (46, XY)

Seeding compatibility

6, 12, 24, 48, 96 & 384 well plates

Shipping info

Dry ice


Caucasian adult male (skin fibroblast)

Vial size

Small: >2.5 x 10 viable cells
Large: >5 x 10 viable cells

Quality control

Sterility, protein expression (ICC) and gene expression (RT-qPCR)

Differentiation method

opti-ox deterministic cell programming

Recommended seeding density

100,000 cells/cm2

User storage

LN2 or -150°C


Cryopreserved cells

Product use

ioCells are for research use only


Muscle and neuromuscular research
Amenable to high throughput screening
Contractility assays
3D co-cultures

Product resources

ioSkeletal Myocytes Brochure
ioSkeletal Myocytes

ioSkeletal Myocytes and related disease models | User Manual User manual
ioSkeletal Myocytes and related disease models | User Manual



Advancements in 3D modeling: Building mature, functional 3D skeletal muscle microtissues in vitro Webinar
Advancements in 3D modeling: Building mature, functional 3D skeletal muscle microtissues in vitro

Dr Marieke Aarts | Principal Scientist | Bi/ond

Amanda Turner | Senior Product Manager |

Watch now
Generation of 3D skeletal muscle microtissues using ioSkeletal Myocytes Poster
Generation of 3D skeletal muscle microtissues using ioSkeletal Myocytes

Dr Mitchell Han




Cell culture hacks | human iPSC-derived skeletal myocytes

Read this blog on skeletal myocytes cell culture for our top tips on careful handling, cell plating and media changes to achieve success from the outset.


Related products

ioSkeletal Myocytes DMD Exon 44 Deletion ioDisease Model Cells
ioSkeletal Myocytes DMD Exon 44 Deletion cat no. io1018
Order now
ioSkeletal Myocytes DMD Exon 52 Deletion ioDisease Model Cells
ioSkeletal Myocytes DMD Exon 52 Deletion cat no. io1019
Order now
ioGlutamatergic Neurons ioWild Type Cells
ioGlutamatergic Neurons cat no. io1001
Order now
ioGlutamatergic Neurons TDP‑43 M337V/WT ioDisease Model Cells
ioGlutamatergic Neurons TDP‑43 M337V/WT cat no. ioEA1006
Order now
ioGlutamatergic Neurons TDP‑43 M337V/M337V ioDisease Model Cells
ioGlutamatergic Neurons TDP‑43 M337V/M337V cat no. ioEA1005
Order now
CRISPR-Ready ioGlutamatergic Neurons CRISPR-Ready ioCells
CRISPR-Ready ioGlutamatergic Neurons cat no. io1090S
Order now
ioMotor Neurons ioWild Type Cells
ioMotor Neurons cat no. io1027
Order now

Related pages

Discover ioCells Learn about our range of human iPSC-derived cells for research and drug discovery
Resources Explore our latest scientific insights, webinars, blogs and videos
Our platform Discover the cell coding platform that powers our ioCells