ioSkeletal-Myocytes-2550px_wide-banner-comp

cat no | io1002

ioSkeletal Myocytes

Human iPSC-derived
skeletal myocytes

ioSkeletal Myocytes, are human iPSC-derived skeletal myocytes precision reprogrammed using opti-ox™ technology. Skeletal myocytes are delivered cryopreserved, upon revival the cells rapidly mature forming elongated striated, multinucleated muscle cells that contract within 10 days. Easy to culture, skeletal myocytes consistently exhibit high population purity expressing key myofilament proteins such as Desmin and Myosin Heavy Chain (MHC).

ioSkeletal Myocytes provide a source of highly-defined, consistent and reliable human muscle cells for research, disease modelling and high-throughput screening across areas such as muscle, neuromuscular, and associated metabolic disorders.

Request a quote

Once your quote request has been submitted, one of our sales team will be in contact.

Unsure where to start?

Get in touch and we'll guide the way!

Benchtop benefits

consistent_0

Consistent

Batch-to-batch reproducibility and homogeneity create a stable human model for the study of muscle, neuromuscular, and associated metabolic disorders.

quick_0

Quick

Form striated, multinucleated, myocytes by day 10 post revival, that contract in response to acetylcholine.

easy_0

Easy-to-use

Cells arrive programmed to rapidly mature upon revival. One medium is required in a two-step protocol.

Product information

Starting material

Human iPSC line

Karyotype

Normal (46, XY)

Seeding compatibility

6, 12, 24, 48, 96 & 384 well plates

Shipping info

Dry ice

Donor

Caucasian adult male (skin fibroblast)

Vial size

Small: >2.5 x 10 viable cells
Large: >5 x 10 viable cells

Quality control

Sterility, protein expression (ICC) and gene expression (RT-qPCR)

Differentiation method

opti-ox cellular reprogramming

Recommended seeding density

100,000 cells/cm2

User storage

LN2 or -150°C

Format

Cryopreserved cells

Product use

ioCells are for research use only

Applications

Muscle and neuromuscular research
Amenable to high throughput screening
Contractility assays
3D co-cultures

Technical data

Ready within days

ioSkeletal Myocytes generated by transcription factor-driven reprogramming of iPSCs using opti-ox technology

Time-lapse video capturing the rapid and homogeneous skeletal myocytes phenotype acquisition upon thawing of cryopreserved ioSkeletal Myocytes. 10 day time course.

Highly characterised and defined

ioSkeletal Myocytes express skeletal myocyte-specific markers

bit.bio ioSkeletal Myocytes Desmin DAPI
A. Desmin (red) /
DAPI (blue)
bit.bio ioSkeletal Myocytes Dystrophin DAPI
B. Dystrophin (green) /
DAPI (blue)
bit.bio ioSkeletal Myocytes Myogenin MHC
C. Myogenin (green) /
MHC (red)
bit.bio ioSkeletal Myocytes Troponin Phalloidin DAPI
D. Troponin (green) /
Phalloidin (red) /
DAPI (blue)

Immunocytochemistry staining at day 10 post revival demonstrates robust expression of components of the contractile apparatus such as Desmin (A), Dystrophin (B), and Myosin Heavy Chain (C), along with the muscle transcription factor Myogenin (C). Cells also demonstrate expression of Troponin with visible striated fibres and multinucleation (D).

Cells demonstrate classical myocyte morphology

day 3
day 5
day 10

ioSkeletal Myocytes form elongated multinucleated myocytes over 10 days. Day 1 to 10 post-thawing; 4X magnification; scale bar: 800µm

Cells demonstrate gene expression of key myogenic markers following reprogramming

Cells demonstrate gene expression-1

Following reprogramming, ioSkeletal Myocytes downregulate expression of the pluripotency genes (A), whilst demonstrating robust expression of key myogenic markers (B). Gene expression levels assessed by RT-qPCR (data expressed relative to the parental hiPSC, normalised to HMBS). Data represents day 10 post-revival samples; n=7 biological replicates.

Robust and scalable cells for high-throughput screening

Cells are suitable for phenotypic based high-throughput screening

 

Immunocytochemistry-3
MHC positive cells-1

Click on the tabs to explore the data.

(A) Immunocytochemistry | Human fibroblasts were transduced with lentiviral vectors allowing inducible over-expression of MYOD1 to transdifferentiate them to myocytes in approximately 10 days. Transdifferentiated myotubes were stained for multiple myotube markers to assess the purity and degree of multi-nucleation. (B) Immunocytochemistry | ioSkeletal Myocytes generate myocytes within as little as 4 days post-revival with a high-degree of MHC+ cells (>80% purity), suitable for phenotypic based high throughput screens. (C) Myosin Heavy Chain Positive Cells | The total area of MHC positive cells generated is similar in a comparison between ioSkeletal Myocytes and transdifferentiated fibroblasts.

Shushant Jain et al, Charles River Laboratories

Rapid gain of functionality

Cells express the insulin regulated glucose transporter GLUT4, critical for metabolic studies

Gene expression-1
Immunocytochemistry-2
Western Blotting-1

Click on the tabs to explore the data.

(A) Gene expression | RT-qPCR, at day 10 post-revival, demonstrating expression of GLUT4 in the ioSkeletal Myocytes, compared to undifferentiated human iPSCs and ioGlutamatergic Neurons. (B) Immunocytochemistry | at day 7 post-revival, ioSkeletal Myocytes express GLUT4 in peri-nuclear regions, and show striations. (C) Western blotting | analysis of differentiated 3T3-L1 adipocytes and maturing ioSkeletal Myocytes demonstrates GLUT4 expression in a time-dependent manner.

Dougall Norris & Daniel Fazakerley, Wellcome-MRC Institute of Metabolic Science

In vitro human muscle cells suitable for contractility assays

By day 10 post-revival, cells demonstrate a strong contractile response upon addition of acetylcholine, providing a suitable human muscle model for contractility assays. Spontaneous contraction is also observed during continuous culture (data not shown). Day 10 post-revival skeletal myocytes; 50µM acetylcholine.

Seeding density

Available in two vial sizes, tailored to suit your experimental needs with minimal waste

ioSkeletal-WT-well_plate

Recommended seeding density for ioSkeletal Myocytes is 100,000 cells/cm2.

One Small vial can plate a minimum of 0.5 x 24-well plate, 0.75 x 96-well plate, or 1 x 384-well plate.

One Large vial can plate a minimum of 1 x 24-well plate, 1.5 x 96-well plates, or 2 x 384-well plates.

Cells arrive ready to plate

bit.bio-ioskeletal-myocytes_v3_horizontal_standard

ioSkeletal Myocytes are delivered in a cryopreserved format and are programmed to rapidly mature upon revival in the recommended medium. The protocol for the generation of these cells is a three-phase process: Phase 0. Induction (carried out at bit.bio) Phase 1. Stabilisation for 3 days. Phase 2. Maintenance during which the skeletal myocytes mature.

Product resources

Functional neurological restoration of amputated peripheral nerve using biohybrid regenerative bioelectronics | Publication Publication
Functional neurological restoration of amputated peripheral nerve using biohybrid regenerative bioelectronics | Publication

Rochford and Carnicer-Lombarte et al.

Science Advances

2023

Read more
Introducing ioSkeletal Myocytes™ | Developing the next generation of human muscle cells Video
Introducing ioSkeletal Myocytes™ | Developing the next generation of human muscle cells

Dr Will Bernard | Director of Cell Type Development | bit.bio

Watch now
Research in Motion with ioSkeletal Myocytes™ Webinar
Research in Motion with ioSkeletal Myocytes™

Charles River Laboratories &  bit.bio


Watch more
Scalable human skeletal myocytes by opti-ox™ reprogramming of iPSCs for the study of muscle and metabolic disorders Poster
Scalable human skeletal myocytes by opti-ox™ reprogramming of iPSCs for the study of muscle and metabolic disorders

Bernard | et al
bit.bio

Download
ioSkeletal Myocytes™ Brochure
ioSkeletal Myocytes™

bit.bio

Download
A novel human skeletal muscle in vitro model using opti-ox™ mediated cellular reprogramming of induced pluripotent stem cells Poster
A novel human skeletal muscle in vitro model using opti-ox™ mediated cellular reprogramming of induced pluripotent stem cells

Bernard et al
bit.bio

Download
Advances in cellular reprogramming: from stem cells to printed tissues Webinar
Advances in cellular reprogramming: from stem cells to printed tissues

Prof Hagan Bayley | University of Oxford
Dr Mark Kotter | Founder and CEO | bit.bio

Watch now

Giving you easy access
to endless and reliable human cells

Read this blog to find out how our precision cellular reprogramming technology, opti-ox is powering cell identity, giving you easy access to endless and reliable human cells!

Giving you easy access to the best cells

Related products

ioSkeletal Myocytes DMD Exon 52 Deletion™ ioDisease Model
ioSkeletal Myocytes DMD Exon 52 Deletion™ cat no. io1019
Order now
ioSkeletal Myocytes DMD Exon 44 Deletion™ ioDisease Model
ioSkeletal Myocytes DMD Exon 44 Deletion™ cat no. io1018
Order now
ioGlutamatergic Neurons PRKN R275W/R275W™ ioDisease Model
ioGlutamatergic Neurons PRKN R275W/R275W™ cat no. io1020
Order now
ioGlutamatergic Neurons PRKN R275W/WT™ ioDisease Model
ioGlutamatergic Neurons PRKN R275W/WT™ cat no. io1013
Order now
ioGlutamatergic Neurons GBA null/WT™ ioDisease Model
ioGlutamatergic Neurons GBA null/WT™ cat no. io1007
Order now
ioGlutamatergic Neurons TDP‑43 M337V/M337V™ ioDisease Model
ioGlutamatergic Neurons TDP‑43 M337V/M337V™ cat no. ioEA1005
Order now
ioGlutamatergic Neurons TDP‑43 M337V/WT™ ioDisease Model
ioGlutamatergic Neurons TDP‑43 M337V/WT™ cat no. ioEA1006
Order now
ioSensory Neurons™ ioWild Type
ioSensory Neurons™ cat no. ioEA1024
Order now
ioGlutamatergic Neurons MAPT N279K/WT™ ioDisease Model
ioGlutamatergic Neurons MAPT N279K/WT™ cat no. io1009
Order now
ioGlutamatergic Neurons MAPT P301S/WT™ ioDisease Model
ioGlutamatergic Neurons MAPT P301S/WT™ cat no. io1015
Order now
ioGlutamatergic Neurons MAPT P301S/P301S™ ioDisease Model
ioGlutamatergic Neurons MAPT P301S/P301S™ cat no. io1018
Order now
ioMicroglia™ ioWild Type
ioMicroglia™ cat no. ioA021
Order now
ioGABAergic Neurons™ ioWild Type
ioGABAergic Neurons™ cat no. ioEA1003S
Order now
ioGlutamatergic Neurons HTT 50CAG/WT™ ioDisease Model
ioGlutamatergic Neurons HTT 50CAG/WT™ cat no. ioEA1004
Order now
ioGlutamatergic Neurons™ ioWild Type
ioGlutamatergic Neurons™ cat no. io1001
Order now

Related pages

Discover ioCells Learn about our range of human iPSC-derived cells for research and drug discovery
Resources Explore our latest scientific insights, webinars, blogs and videos
Our platform Discover the cell identity coding platform that powers our ioCells