MAPT P301SWT homepage image final

cat no | io1015

ioGlutamatergic Neurons
MAPT P301S/WT

Human iPSC-derived FTD disease model

A rapidly maturing, consistent and scalable isogenic system to study frontotemporal dementia (FTD).

ioGlutamatergic Neurons MAPT P301S/WT are opti-ox deterministically programmed glutamatergic neurons carrying a genetically engineered heterozygous P301S mutation in the MAPT gene encoding the tau protein.

Place your order

Confidently investigate your phenotype of interest across multiple clones with our disease model clone panel. Detailed characterisation data (below) and bulk RNA sequencing data (upon request) help you select specific clones if required.

per vial

For academic discounts, sample requests or bulk pricing inquiries, contact us

Benchtop benefits

comparison_0

Make True Comparisons

Pair the ioDisease Model Cells with the genetically matched wild-type ioGlutamatergic Neurons to directly investigate the impact of mutant tau protein on disease.

scalable_0

Scalable

Industrial scale quantities are available with industry-leading seeding densities, and at a price point that allows the cells to be used from research to high throughput screening.

quick_0

Quick

The disease model cells and isogenic control are experiment ready as early as 2 days post revival, and form structural neuronal networks at 11 days.

Technical data

Highly characterised and defined

ioGlutamatergic Neurons MAPT P301S/WT express neuron-specific markers comparably to the isogenic control

ioGlutamatergic neurons MAPT P301S/WT ICC single channel and overlays

Immunofluorescent staining on post-revival day 11 demonstrates similar homogenous expression of pan-neuronal proteins MAP2 and TUBB3 (upper panel) and glutamatergic neuron-specific transporter VGLUT2 (lower panel) in ioGlutamatergic Neurons MAPT P301S/WT compared to the isogenic control. 100X magnification.

ioGlutamatergic Neurons MAPT P301S/WT form structural neuronal networks by day 11

ioGlutamatergic neurons MAPT P301S/WT brightfield morphology

ioGlutamatergic Neurons MAPT P301S/WT mature rapidly and form structural neuronal networks over 11 days, when compared to the isogenic control. Day 1 to 11 post thaw; 100X magnification.

ioGlutamatergic Neurons MAPT P301S/WT demonstrate gene expression of neuronal-specific and glutamatergic-specific markers following deterministic programming

ioGlutamatergic Neurons MAPT P301S/WT rt-qPCR of key markers

Gene expression analysis demonstrates that at day 11, ioGlutamatergic Neurons MAPT P301S/WT (MAPT P301S/WT) and the isogenic control (WT) lack the expression of pluripotency makers (NANOG and OCT4) whilst robustly expressing pan-neuronal (TUBB3 and SYP) and glutamatergic specific (VGLUT1 and VGLUT2) markers, as well as the glutamate receptor GRIA4. Gene expression levels were assessed by RT-qPCR. Data is shown relative to the parental hiPSC control (iPSC Control), normalised to HMBS. Data represents day 11 post-revival samples; n=2 biological replicates.

Disease-related MAPT is expressed in ioGlutamatergic Neurons MAPT P301S/WT following deterministic programming

ioGlutamatergic Neurons MAPT P301S-WT rt-qPCR of MAPT

RT-qPCR analysis demonstrates similar expression level of the MAPT gene in both wild type ioGlutamatergic Neurons (WT) and ioGlutamatergic Neurons MAPT P301S/WT (MAPT P301S/WT) at day 11 post-revival (n=2 replicates). cDNA samples of the parental iPSC line (iPSC Control) were included as a reference.

Disease-related phenotype

Differences in hyperphosphorylation of tau observed in a panel of disease model cells compared to the isogenic control

Hyperphosphorylation of tau in glutamatergic neurons FTD disease model cells carrying MAPT P301S or N279K mutation

ioGlutamatergic Neurons disease model cells carrying MAPT P301S/P301S, MAPT N279K/WT and MAPT N279K/N279K mutations show hyperphosphorylation when compared to the isogenic control ioGlutamatergic Neurons (WT) at day 21. The disease model cells carrying MAPT P301S/WT mutation do not show hyperphosphorylation. The bar graphs show total Tau, pTau217/total Tau, pTau202/5/total Tau or pTau404/total Tau in cell bodies, analysed by immunocytochemistry. Statistical analyses performed on 5 cellular replicates in the same plate. Bars showing mean, error bars showing standard deviation. Statistics calculated by one way ANOVA and Tukey posthoc analysis. Data courtesy of Charles River Laboratories.

Cells arrive ready to plate

ioGlutamatergic Neurons MAPT P301S/WT arrive ready to plate

ioGlutamatergic Neurons MAPT P301S/WT are delivered in a cryopreserved format and are programmed to mature rapidly upon revival in the recommended media. The protocol for the generation of these cells is a two-phase process: Phase 1, Stabilisation for 4 days; Phase 2, Maintenance, during which the neurons mature. Phases 1 and 2 after revival of cells are carried out by the customer.

Industry leading seeding density

Do more with every vial

ioGlut-HTT50CAG_WT-well_plate-2

The recommended minimum seeding density is 30,000 cells/cm2, compared to up to 250,000 cells/cm2 for other similar products on the market. One small vial can plate a minimum of 0.7 x 24-well plate, 1 x 96-well plate, or 1.5 x 384-well plates. One large vial can plate a minimum of 3.6 x 24-well plates, 5.4 x 96-well plates, or 7.75 x 384-well plates. This means every vial goes further, enabling more experimental conditions and more repeats, resulting in more confidence in the data.

Product information

Starting material

Human iPSC line

Karyotype

Normal (46, XY)

Seeding compatibility

6, 12, 24, 48, 96 & 384 well plates

Shipping info

Dry ice

Donor

Caucasian adult male (skin fibroblast)

Vial size

Small: >1 x 10⁶ viable cells
Large: >5 x 10⁶ viable cells

Quality control

Sterility, protein expression (ICC), gene expression (RT-qPCR) and genotype validation (Sanger sequencing)

Differentiation method

opti-ox deterministic cell programming

Recommended seeding density

30,000 cells/cm2

User storage

LN2 or -150°C

Format

Cryopreserved cells

Genetic modification

Heterozygous P301S missense mutation in the MAPT gene

Applications

FTD research
Drug discovery and development
Disease modelling
High content imaging
Western blotting
Electrophysiological assays (MEA)
Co-culture studies

Product use

ioCells are for research use only

Product resources

ioGlutamatergic Neurons Brochure
ioGlutamatergic Neurons

bit.bio

Download
ioGlutamatergic Neurons Wild Type and related disease models | User Manual User manual
ioGlutamatergic Neurons Wild Type and related disease models | User Manual

V11

bit.bio

2024

Download
Generation and characterisation of a panel of human iPSC-derived neurons and microglia carrying early and late onset relevant mutations for Alzheimer’s disease Poster
Generation and characterisation of a panel of human iPSC-derived neurons and microglia carrying early and late onset relevant mutations for Alzheimer’s disease
Smith, et al. 
bit.bio
2024
Download
Generating publishable neuroscience research in 12 weeks with ioGlutamatergic Neurons Case study
Generating publishable neuroscience research in 12 weeks with ioGlutamatergic Neurons

Professor Deepak Srivastava

Professor of Molecular Neuroscience and Group Leader, MRC Centre for Developmental Disorders

King’s College London 

Download
Running Large-Scale CRISPR Screens in Human Neurons Webinar
Running Large-Scale CRISPR Screens in Human Neurons

Emmanouil Metzakopian | Vice President, Research and Development | bit.bio

Javier Conde-Vancells | Director Product Management | bit.bio

Watch now
Addressing the Reproducibility Crisis | Driving Genome-Wide Consistency in Cellular Reprogramming Webinar
Addressing the Reproducibility Crisis | Driving Genome-Wide Consistency in Cellular Reprogramming

Dr Ania Wilczynska | Head of Computational Genomics | Non-Clinical | bit.bio

Watch now
Industrialising Cellular Reprogramming: Leveraging opti-ox Technology to Manufacture Human Cells with Unprecedented Consistency Talk
Industrialising Cellular Reprogramming: Leveraging opti-ox Technology to Manufacture Human Cells with Unprecedented Consistency

Innovation showcase talk at ISSCR

Marius Wernig MD, PhD | Stanford 

Mark Kotter, MD, PhD | bit.bio

Watch now

Cell culture hacks | human iPSC-derived glutamatergic neurons 

Read this blog on glutamatergic neuron cell culture for our top tips on careful handling, cell plating and media changes to achieve success from the outset.

bit.bio_3x2_ioGlutamatergic Neurons_MAP2_Hoescht_x20_hi.res (1)

Related products

ioGlutamatergic Neurons MAPT P301S/P301S ioDisease Model Cells
ioGlutamatergic Neurons MAPT P301S/P301S cat no. io1008
Order now
ioGlutamatergic Neurons MAPT N279K/WT ioDisease Model Cells
ioGlutamatergic Neurons MAPT N279K/WT cat no. io1009
Order now
ioGlutamatergic Neurons MAPT N279K/N279K ioDisease Model Cells
ioGlutamatergic Neurons MAPT N279K/N279K cat no. io1014
Order now
ioGlutamatergic Neurons ioWild Type Cells
ioGlutamatergic Neurons cat no. io1001
Order now
CRISPR-Ready ioGlutamatergic Neurons CRISPR-Ready ioCells
CRISPR-Ready ioGlutamatergic Neurons cat no. io1090S
Order now
ioGlutamatergic Neurons HTT 50CAG/WT ioDisease Model Cells
ioGlutamatergic Neurons HTT 50CAG/WT cat no. ioEA1004
Order now
ioGlutamatergic Neurons TDP‑43 M337V/WT ioDisease Model Cells
ioGlutamatergic Neurons TDP‑43 M337V/WT cat no. ioEA1006
Order now
ioGlutamatergic Neurons PRKN R275W/WT ioDisease Model Cells
ioGlutamatergic Neurons PRKN R275W/WT cat no. io1013
Order now
ioGlutamatergic Neurons TDP‑43 M337V/M337V ioDisease Model Cells
ioGlutamatergic Neurons TDP‑43 M337V/M337V cat no. ioEA1005
Order now
ioGlutamatergic Neurons PRKN R275W/R275W ioDisease Model Cells
ioGlutamatergic Neurons PRKN R275W/R275W cat no. io1020
Order now

Wild Type and Isogenic Disease Model cells: A true comparison.

Further your disease research by pairing our wild type cells with isogenic disease models.

 

bitbio-vials-Wild_and_Disease-staggered-2500px_wide

Related pages

Discover ioCells Learn about our range of human iPSC-derived cells for research and drug discovery
Resources Explore our latest scientific insights, webinars, blogs and videos
Our platform Discover the cell coding platform that powers our ioCells