Webinar

Running Large-Scale CRISPR Screens in Human Neurons

This webinar showcases two peer-reviewed studies using opti-ox™ powered human neurons constitutively expressing Cas9 for the generation of large scale CRISPR screens for the identification of new therapeutic targets for the treatment of neurodegenerative diseases.
Running Large-Scale CRISPR Screens in Human Neurons

Emmanouil Metzakopian, PhD

Vice President, Research and Development

bit.bio

Running Large-Scale CRISPR Screens in Human Neurons

Javier Conde-Vancells, PhD

Director Product Management

bit.bio

Running Large-Scale CRISPR Screens in Human Neurons
This webinar showcases two peer-reviewed studies using opti-ox™ powered human neurons constitutively expressing Cas9 for the generation of large scale CRISPR screens for the identification of new therapeutic targets for the treatment of neurodegenerative diseases.
Running Large-Scale CRISPR Screens in Human Neurons

Emmanouil Metzakopian, PhD

Vice President, Research and Development

bit.bio

Running Large-Scale CRISPR Screens in Human Neurons

Javier Conde-Vancells, PhD

Director Product Management

bit.bio

Identifying therapeutic targets for neurodegenerative conditions is often challenging due to the limited accessibility of reproducible, scalable in vitro cell models. Genome-level CRISPR screens are useful for these studies but performing screens that include the necessary replicates requires billions of cells. Human iPSC-derived cells can provide the needed scale, however, the complex process of directed differentiation is time-consuming, resource-intensive, and rarely feasible. Furthermore, delivering ribonucleases by transfection or transduction is inefficient in human iPSC-derived cells, especially delicate cell types like neurons. As a result, scientists often rely on immortalised cell lines, which do not accurately represent human biology or disease states, to run large-scale CRISPR screens.

In this webinar, our two experts discuss solutions for running large-scale CRISPR screens to identify therapeutic targets for neurodegenerative diseases. They will present ioCRISPR-Ready Cells™: human iPSC-derived cells precision reprogrammed with opti-ox™, that constitutively express Cas9 nuclease, which are built for rapidly generating gene knockouts and CRISPR screens. During the webinar, you’ll learn about two peer-reviewed studies that performed large scale CRISPR knockout screens using opti-ox powered glutamatergic neurons with stable Cas9 expression. The first study demonstrates a loss of function genetic screen using a human druggable genome library. The second study investigated possible regulators of the RNA binding motif 3 protein, whose enhanced expression is highly neuroprotective both in vitro and in vivo. 

Learning outcomes:

  • Learn about ioCRISPR-Ready Cells: development and applications.
  • Uncover the use of these cells in a large-scale loss-of-function knockout screen that identified 13 druggable targets for protection against cell death pathways observed in neurodegenerative proteinopathies.
  • Gain insights into a genome-wide knockout screen in these cells that elucidated how neuroprotective protein RMB3 expression is regulated, identifying a new potential therapeutic for neurodegenerative disease.

Emmanouil Metzakopian | Vice President, Research and Development | bit.bio

Javier Conde-Vancells | Director Product Management | bit.bio

Related pages

News Read our latest updates and press coverage
Our platform Discover the cell identity coding platform behind our cells
Join us Explore the latest roles at bit.bio